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Abstract

In this paper, by systematically treating the integrals involved in the piezoelectric inclusion problem, we have ob-
tained explicit results for the piezoelectric Eshelby tensors for a spheroidal inclusion aligned along the axis of the
anisotropy in a transversely isotropic piezoelectric material. This problem was first treated by Dunn and Wienecke (Int.
J. Solids Struct. 34 (27), 3571-3582) using a Green’s function approach, which closely follows Withers” approach (Phil.
Mag. A 59 (4), 759-781) for an ellipsoidal inclusion problem in a transversely isotropic elastic medium. The same
problem was recently treated by Michelitsch and Levin (Eur. Phys. J. B 14, 527-533), who also used a Green’s function
approach. In this paper, we also obtain the piezoelectric Eshelby tensors for a spheroidal inclusion explicitly, but using a
different approach. The method is a direct extension of a more unified approach, which has been recently developed by
Mikata (Int. J. Engng. Sci. 38, 608-641), which is based on Deeg’s results (Ph.D. dissertation, Stanford University) on a
piezoelectric inclusion problem. The main advantage of this method is that it is more straightforward and simpler than
Dunn and Wienecke (1996), or Michelitsch and Levin (2000), and the results are a little bit more explicit than their
solutions. The key step of this paper is an analytical evaluation of several integrals, which was made possible after a
careful treatment of a certain bi-cubic equation. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The importance of piezoelectric composites has been well documented in recent years in relation to smart
materials and smart structures as well as electronic packaging (Taya, 1995). For production and application
of the piezoelectric composites, the characterization of piezoelectric composites becomes very important. In
the characterization of the linear elastic composite materials, Eshelby tensor has played a dominant role
(Mura, 1987; Mori and Tanaka, 1973). Similarly, the central issue in the characterization of piezoelectric
composites is determination of the piezoelectric Eshelby tensors (Mikata, 2000).
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This paper treats the explicit determination of the piezoelectric Eshelby tensors for a spheroidal in-
clusion aligned along the axis of the anisotropy in a transversely isotropic piezoelectric material. This
problem was first treated by Dunn and Wienecke (1996), and recently by Michelitsch and Levin (2000).
There have been a number of studies on piezoelectric inclusion problems as well as piezoelectric com-
posites (Deeg, 1980; Benveniste, 1992; Wang, 1992; Dunn and Taya, 1993a,b; Dunn, 1994; Huang and
Yu, 1994; Dunn and Wienecke, 1996; Huang, 1996; Michelitsch and Levin, 2000; Mikata, 2000). How-
ever, only three (Huang and Yu, 1994; Dunn and Wienecke, 1996; Michelitsch and Levin, 2000) of the
above studies have considered the piezoelectric Eshelby tensors for a spheroidal inclusion in more details.
In particular, Dunn and Wienecke (1996) have obtained the piezoelectric Eshelby tensors for a spheroidal
inclusion explicitly using a Green’s function approach, which closely follows Withers (1989) approach for
an ellipsoidal inclusion problem in a transversely isotropic elastic medium. Michelitsch and Levin (2000)
also recently obtained piezoelectric Eshelby tensors for a spheroidal inclusion explicitly by deriving
Green’s functions for transversely isotropic piezoelectric materials. In this paper, we also obtain the pie-
zoelectric Eshelby tensors for a spheroidal inclusion explicitly, but using a different approach. The method
is a direct extension of a more unified approach, which has been recently developed by Mikata (2000).
The main advantage of this method is that it is more straightforward and simpler than Dunn and
Wienecke (1996), or Michelitsch and Levin (2000), and the results are a little bit more explicit than their
solutions.

The general strategy of this paper largely follows the one employed in the recent publication by the
present author (Mikata, 2000), where Deeg’s results (1980) on a piezoelectric inclusion problem were used.
The key step of this paper is an analytical evaluation of several integrals, which was made possible after a
careful treatment of a certain bi-cubic equation.

2. Governing equations of piezoelectricity

The governing equations of piezoelectricity are given by

o+ /=0 (1)
6ij = Ciimnbn — €nijE, (2)
Emn = (tmn + ) (3)
Di;=p (4)
D; = Cimntn + Kink, (5)
E,=~¢, (6)

where 6y, &, U, and f; are stress, strain, displacement field and body force, respectively, D;, E;, p, and ¢ are
electric displacement, electric field, electric charge density and electric potential, respectively, and Cjju, Kix
and e,; are elastic moduli, permittivity and piezoelectric constants, respectively. Eqgs. (1)—(3) describe the
elasticity of the material, whereas Eqs. (4)—(6) describe the electrostatics of the material. The coupling
between elasticity and electrostatics, i.e., piezoelectricity, is provided by the piezoelectric constants e,;. It
should be noted here that the electrostatic part (Eqs. (4)—(6)) is written in the rationalized MKSA system
(see Jackson, 1975).
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Following Barnett and Lothe (1975) and Deeg (1980), we will rewrite the above governing equations by
defining the following variables.

_Ju, forM (=m)=1,2,3
UM_{d) for M =4 ()

for M (=m)=1,2,3
E, forM=4 (8)

for J = 4 ©)

forJ (=j)=1,2,3
—p forJ = 4

J

=%
{q, for J (=j)=1,2,3
m-{!

(10)

Cijmm forJ,M=1,2,3

€nij forJ=1,2,3; M=4 (11)
Cimn forJ =4, M=1,2,3

ki, forJ=M=4

F;’JMn =

where Uy, Zy,, 21y, p; and Fyyy,, are displacement — electric potential, strain — electric field, stress — electric
displacement, body force — electric charge density and piezoelectric moduli, respectively. With the help of
Egs. (7)-(11), the governing equations of piezoelectricity, i.e., Egs. (1)-(6), can be compactly rewritten as
(see Mikata, 2000)

FininUnp i = —pPy (12)

3. Piezoelectric inclusion problem

Let us consider a piezoelectric inclusion problem where a region Q in an infinite domain R® has a con-
stant eigenstrain — eigen electric field Z*, which is both stress free and electric displacement free (see Fig. 1).
There are no body force and no charge density for this problem. Mathematically, the problem is defined as
follows:

Zyi=0 (13)
2 = Fopi[Zomn — Zy,(X)] (14)
F;’JMnZMn = EJMn UMJ[ (15)

where the eigenstrain—eigen electric field Z;, (x) is given by

. Z, xeQ
Zut) = {5 \ER g (16)

Substituting Eqs. (14) and (15) into Eq. (13), we obtain
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R}-Q

Fig. 1. Eigenstrain—eigen electric field Z* in a region  in an infinite piezoelectric medium.

FninUnt i = Finin0iZy,(X) (17)

where 0; denotes the partial differentiation with respect to x;. It is seen from Eq. (17) that F;;,,0,Z;,,(X) acts
as a body force-electric charge density. Deeg (1980) has obtained a fairly general result for this problem in
an integral form. The case when the shape of the inclusion € is an ellipsoid, however, is the most interesting.
In this case, the strain-electric field Z in Q resulting from Z* can be sometimes determined explicitly by
evaluating the integral analytically. Deeg (1980) did not do this explicit evaluation in his dissertation. The
result obtained by Deeg (1980) for the ellipsoidal case can be recast into the following form.

ZMn = SMnAbZ,:/) in Q (18)

where Sy;.4p 18 a piezoelectric analog of Eshelby tensor, and is given by

éEJAIJ ([inm.] + Iian) When M = la 2) 3
Swinap = 1 (19)
1= Fuanlinas when M =4
1 -1
Ly = a1aza3 —3x,-x,,KMJdS (20)
[x|=1 u
u= \/a%x% + a%x% + a%x% (21)
Ky = FomsgXpXq = FpinigXpXy (22)

where ¢; is the length of the semi-axis of the ellipsoid in the x;-direction. In light of the fact that Sy,
consists of four different tensors, in this paper, it shall be called piezoelectric Eshelby tensors (cf., Mikata,
2000). |x| = 1 is the surface of the unit sphere and K} is the inverse of 4 x 4 matrix K, which is defined by
Eq. (22). The shape of the ellipsoid will affect the piezoelectric Eshelby tensors Sy, through u in the in-



Y. Mikata | International Journal of Solids and Structures 38 (2001) 7045-7063 7049

tegrand. It should be mentioned here that the coordinate axes are chosen such that they coincide with the
axes of the ellipsoid.

4. Piezoelectric Eshelby tensors

The piezoelectric Eshelby tensors are defined by Egs. (19)-(22). The key part of the definition is the
integral I;,;,;. Using the results of our previous paper (Mikata, 2000), we have

IinMJ:/ldt/znGinMJ(}i>&a}i>d¢ (23)
—1 0 ay a aj
where yi, 3, and y; are given by

yi =V1—£cos¢, ¥ = V1 —£sin ¢, =t (24)
and

G (X) = x:x,K (25)

Let us now specifically consider a transversely isotropic piezoelectric material. The constitutive equations
for the transversely isotropic piezoelectric material are given by

Ox Ch Cp C3 0 O 0 Exx 0 0 ey
Oyy C12 C1 1 C13 0 0 0 &y 0 0 €3]
Oz | _ Ciy Cs G 0 0 0 &2z 0 0 e g
o | =10 0 0 cu 0 0 2. | |0 es 0% (26)
O 0 0 0 0 Cy 0 ¢, es 0 O :
O-x_v 0 0 0 0 0 %(Cll — CIZ) 28,0, 0 0 0
Exx
D, 00 0 0 es 0] Ky 0 07][E
Dy = 0 0 0 €15 0 0 2: + 0 K11 0 Ey (27)
DZ €31 €31 e33 0 0 0 29)2 0 0 K33 EZ
2¢y,

It should be noted here that the anisotropy axis is along the x;-axis. By using the definition (11) of Fjy,, Ky
of Eq. (22) is given by (see Mikata, 2000)

[ Ciixt + Caaxl + 1(Ci + C)xixa (Ci3 + Caa)x3x (er1s + e31)x3x; ]
%(Cll - Cu)Xﬁ
HCn+ Co)xixa 1(Cyy — Cio)xt 4+ Crixs + (Ci3 + Caa)xax3 (e1s + e31)x2x3
C44x%
Ky = : (28)
(Ci3 + Cas)x3x (Ci3 + Cas)xax3 Cu(x?+x3) + Cx3  eis(x] +x3)+
ex3x3
(e1s + e31)xax (e1s + e31)x2x3 ers(xi +x3) +esxy  —xn(xf +x3)—
L K33X§ i

The inverse matrix K} is calculated as (see Huang and Yu, 1994; Mikata, 2000)
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by by biz by
1 [ by by by by

K =D by bu by b 29)
by by byz bu
where
D(x1,x2,x3) = —PQ
P(x1,x2,x3) = (C;y — Cpo)z + 2C44x§ (30)
O(x1,%2,%3) = 12" + §22°%3 + q32x3 + qax§
z= xf + x%
and
b = (rmxf + rmxi)z2 + (rmx% + r114x§)x§z + (rlle% + r116x§)x§ + rmxg
b, = xlxz[r12122 + rmZX% + V123x§]
b1y = x1x3P[r1312 + r132x3]
by = x1X3P[r1412 + r14o%3)
by = b
by = (szle + szzxg)zz + (7’22336% +r 224x§)x§z +(r 225X% +r 226x§)x§ + 1”227xg)
by = xox3P[rmiz + Vzazxg]
byy = X3x3P[r412 + Fasox] (31)
by = b3
by = by

2 2 4
b3y = Plrysiz” + r3szx; + raxs]

2 2 4
b3y = P[rsaiz” + rauzxj + rasxs)

by = by
by = by
by = by

2 2 4
bas = Plranz” + raanzxj + rasxs]

g; (i = 1-4) in Eq. (30) and 7, in Eq. (31) are functions of piezoelectric material parameters, and are given
in Appendix A. Since K,,} in Eq. (25) is a symmetric matrix, we have

[inMJ = IinJM (32)

The piezoelectric Eshelby tensors Sy, defined by Eq. (19) have already been obtained in terms of [;,,, for
an arbitrary ellipsoid in a transversely isotropic material whose axes coincide with the axes of the an-
isotropy (see Mikata, 2000).

5. Spheroidal inclusion along the x;-axis

The spheroidal inclusion along the x3-axis can be represented by
o1, fep (33)

a as

a) = a,
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Substituting Eq. (33) into Eq. (23), we obtain

a a a

1inMJ :/ GinMJ <&7&7%> ds :/ GinMJ(ylayZaﬂyfi)dS (34)
ly[=1 lyl=1

The second equality in Eq. (34) follows from the fact that G, (x) is a homogeneous function of order zero.
Substituting Eq. (25) into Eq. (34), we obtain the non-zero components of [, as

111MJ=/ ViK1, 35, Bys) dS

[y[=1

122MJ=/ Ky (01, 12, Bys) dS
[y[=1

133MJ = ﬁzngAjf}(ylayb.ByﬁdS
lyl=1

11212:/ vk, 1,02, Bys) dS
lyl=1

I3z = ByivsK 3 (0,02, Bys) dS
lyl=1

L1314 = ByiysK . (1,0, Bys) dS

lyl=1

bz = ByaysKsy' (vi, 32, Bys) dS

lyl=1

Dy = ByaysKsy' (1,32, Bys) dS
ly|=1

Let us parametrize the unit sphere as follows.
¥y = sin 0 cos ¢, ¥y =sinlsin ¢ y3 =cos 0 0<0<m, 0<¢p<2n (36)
The area element is given by

ds = sin 0d0de (37)

It can be easily seen from Egs. (30) and (36) that D(y,», ;) does not depend on ¢. Substituting Egs. (36)
and (37) into Eq. (35), and performing the integration with respect to ¢, and further changing the variables
from 6 to ¢ by

t=cos0, dr = —sin 040, sin?f =1 — 7 (38)

we finally obtain
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1 2

i 1 —¢

I = oy =3 / D (Brin + ) (1= 2)° + B Bris + ) (1 = £2)°2
0

4 Gris 4 r (1 = P04

1 2

i 1 —¢

L =y = 5 / D [(3ra21 +7222) (1 — f2)3 + B2 (3razs + roaa) (1 — tz)ztz
0

+ ﬁ4(31"225 + 1”226)(1 — lz)t4 + 4ﬂ67227l6] dt

1 2
1 —1¢
L33 = Ipg3 = =21 T[rm(l - 12)2 + Frin(l — ) + Blristt] de
0
"1-7 o2 2 2N 2 4 4
L4s = Inay = =21 0 [raai (1 = )" 4 B raaa(1 — )8 + Bragst’] dt
0
1-7
Lizs = Inzs = =21 0 [Faar(1 — 1 2 4 B2 rn(1— ) + Brst’]de
0
2 ! tz 273 2 2\2 2
LI = I3 = 21 /0 B[Um +r)(1 =) + B (ris +rus) (1 — )t (39)

+ [34(}"115 + 7116)(1 — t2)14 + 2ﬁ67’]17t6] dr

1 p
I3333 = —4nﬂ2/ @ [ri(1 — fz)z + /32”332(1 - 12)12 + ﬁ4r333t4] dr
0
_ 2 : r 2\2 2 25,2 4 4
L3344 = —4mf é[i’w(l — )+ fran(1 — )67 + [ragst’]de
0
12
13334 - —4Tfﬁ2/ é [1"341(1 — t2)2 =+ ﬂ27’342(1 — tz)lz + ﬁ47"343l4] dl
0

T 1(1_t2)2 N2 | @2 N2 A 4
11212:—/ ———— (1 =) 4+ Brin(l =) + frst’]de
0

2 D
b l—t2 5 s,
Lisis = by = —2nff° [V131(1 — ) + Brt’] de
tz 1- tz 2 2 2
L = by = —2nf° —[7’141(1 — )+ frgptt]de
where
D= —PO
P= (Cll — Clz)(l — fz) + 2C44ﬁ212 (40)
0=q(1=7) + Fq2(1 =2V + Bas (1 = £) + fqut®

In Eq. (39), the equalities /1111 = I, li122 = I, s = I3, Disis = Do, li31a = D, are obtained from
the relations among r;; given in Appendix A. It should be noted that 7;,,; in Eq. (39) coincide with G, in
Eq. (20) of Huang and Yu (1994) with the following notational correspondence
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GMJi n — LinMJ

p=F5

except that there are a few misprints in their paper regarding the coefficients of the polynomials in the
integrands which are given in Appendix A of their paper.

By using the result (46) of our previous paper (Mikata, 2000) and Eq. (39) above, the piezoelectric
Eshelby tensors Sy,4, for a spheroidal inclusion along the x;-axis can be obtained in terms of /[, as

1
St = Som = in [Ciilint + Criodioiz + Cisliziz + e3ili314)

1
Stz =S»i1 = in [Cialiin + Ciiliann + Cializiz + e3li314)

1
Sz = So33 = in [Cis(lin + Daiz) + Caslisiz + e33]i314]

1
S]143 = S2243 = E[eﬂ(lllll +11212) + 63311313 - K3311314]

1
S1212 = Sl221 = S2112 = S2121 = g (Cll - C12)[11122 + 11212]

1
3 (Caa(T1133 + T3311 + 21313)

+ eis(Liizs + L1314)]

S1313 = S1331 = S3113 = S3131 = S2323 = S2330 = S3003 = S0 =

1
S1341 = S3141 = S2342 = S42 = 3 lers(L1133 + s + 200313) — w11 (liza + Li314)]

S3311 = S33 = in [Ci111313 + Cioloss + Cialaass + e31l3334) (42)
1

S3333 = in [Ci3(I1313 + Dans) + Cialaasz + e33ls334)

S3343 = in lesi (11313 + Do323) + e3slza3s — K33l3334]

1
Sa11z = Sa131 = Sax3 = Sapzp = in [Caa(T1134 + T1314) + €15]1144]

1
Sa1a1 = Sppar = in lers(Tiiza + Di31a) — Ki1d1144)

Sa311 = Sazm = in [Ciii31a + Cialosos + Cislasss + e3113344]
1
Su333 = in [Ci3(L1314 + Ir304) + Ca3la334 + e3303344]

Siq3 = in les1 (11314 + Do3oa) + e33l3334 — K333344]

Symap = 0,  otherwise

It will be shown in the following that we can proceed further, and in fact we can evaluate the integrals in
Eq. (39) analytically in an exact closed form. To this end, let us rewrite Eq. (39) as
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T

Iy = op = —511(2ﬁ2C44, Cy — Clz;ﬁéf]zhﬁ4(]37ﬁth’(I1;511175112,5113,5114)
T

I =Iny = *511 (2B*Caa, C1y — Ci2; B°qa, Bq3, Bq2, 415 5201, 5222, 5223, S224)

Iiss = Doy = —2nLu(B°qs, B'qs, B a2, q1; Brass, Brrsaa, m3an)

Iias = Ings = —21La(B°qa, B, 22,41 B rass, Brass, raan)

Inas = Doss = —27L(Bqa, B a3, B2a2, q15 B'rsas, Brsaa, r3ar)

Ly = I = —27513212 (2ﬂ2C44, Cn— C12§ﬁéfh,.341137/32112741;533175332753337&34) (43)
L33 = —47513215 (56%,/3443; /32612,f]1§ﬁ4’”3337/327”33277’331)

L3y = —475/3215 (ﬁéfha ﬂ443, /32%, q1; ﬂ4’”4437 ﬁ27’4427 7’441)

L3 = —4Tfﬁ215 (ﬁﬁfha 5443, /32%, q1; ﬁ4’”3437 ﬁ2r3427 7’341)

I = —gh (2ﬁ2C44, Cii — Cio; B°qa, Bras: B, g1 ﬁ4”123,ﬁ2r122,7”121)

Lsiz = Iays = =21f° 16 (B°qa, Bq3, B g2, @1 Boriza, rian)
Iiis = Daoa = =21B°Is (B°qs, B'a3. B a2, 415 Bria, 1141

where

S = 4ﬁ61”117, Si12 = [34(37’115 +7r16),  Suz = ﬁ2(3l”113 +ri14)  Sta = 31+ 1
S| = 4ﬁ61’227 Spn = ﬁ4(31”225 +rn6) Sp3 = ﬁ2(37’223 +r04)  Spa =3 +rm (44)
$331 =2ﬁ6”117 $332 234(7”115'1-’”116) 5333 :ﬁz(V113+r114) 8334 = 111 + 72

and

(1 = 2)[A5 + BA(1 = 2) + C2(1 — £2)° + D(1 — )]
e + f(1 — 2)][ats + bA(1 — 2) + c2(1 — 2)* +d(1 — 2)’]
245 + B*(1 — ) + CA(1 — 2)* + D(1 — )’
el + f(1 = 2)][ats + b*(1 — 2) + c2(1 — 2)* +d(1 — 12)’]

Le,f;a,b,c,d; 4, B,C) =/1 (1= 2)"[ At + B2(1 = ) + C(1 = )]
R o ler2 +f(1—2)]at + bt*(1 — £2) 4+ c2(1 — £2)° +d(1 — )]
L(a,b,c,d; 4,B,C) = /1 (1 —2)Ar + B2(1 - 2) + C(1 - )]
T o ats + b (1 —2) +c2(1 — 2 +d(1 - 1)}
2lart + BA(1 — ) + C(1 — )]
ats + b*(1 — 2) + c2(1 — 2)* + d(1 — )’
! £2(1 —2)[A2 +B(1 — 7
s(a,b,c,d;A,B) = /0 até + bt“(l( £) i[cﬂ(l (t2)2 Jr)(]i(l _ t2)3 !

1
[1(e7f;a7b7c7d;A7B7C’D):/ [
0

dr

1
Iz(e,f;a,b,c,d;AB,c,D):/ [
0

dr

1
[5(a7b7c7d;AaB? C) :/
0

(45)

For the real piezoelectric material parameters, the above integrals are expected to be finite. In fact, this

condition will impose additional constraints on the piezoelectric material parameters, which was discussed

in our previous paper (Mikata, 2000), where the integrals treated were different from the above integrals.

However, exactly the same constraints will be obtained from the consideration of the above integrals.
The analytical evaluations of the above integrals /;,—/s are given in the following. First, let us set
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/
=4/= 46
5= /L (46)
When the condition discussed above is satisfied (see Mikata, 2000), we have the following results. Here we
have assumed that all of the poles of each integrand are a simple pole. If they are not, then we would have
different expressions, which are not listed in the following.
(a) When ¢* +5:p* <0

1wmwﬂ+ﬂhwﬂ+aﬁwﬁ+MAwﬂ

I =—
ae
1

L=— (A + ExJi (&%) + BoJi (o) + GoJ1 (B7) + Hadi (77)]

Iy = é [E3Ji (%) + FsJy (o) + G3J, (B%) + Ha, ()]

1 (47)
Iy = [Fu(62) + Gay () + Hah ()]
1
Is =~ [A+ Fi() + Gsh () + Hsi (77)]
1
I = a [FoJi (o) + GeJ, (B*) + HeJ, ()]
(b) When ¢> + £p* > 0
1
I = — [Ki() + Lii(8) + (g, I My, Ny )]
1
b= [A+ K () + LSy (8%) + a(g. s Mo, No )
1
Iy = — [KaJi(£2) + LsJ1(8%) + Ja(g. b Ms, N3)]
cfe (48)
]4 = ; [L4J1(52) +J2(g7 h7M4’N4)}
1
Is = = [A+ LsJi(8%) + (g, i Ms, Ns)]
1
ls =~ [LeJi(5%) + (g s Mo, No)|
with
g= 22— ) (49)
h=(&+w)

where o, 8, 7, 0, &, n, p and ¢ are defined in Appendix B, and the coefficients E; (i = 1-3), F; (i = 1-6),
G (i=1-6), H;, (i=1-6), K; (i=1-3), L, (i = 1-6), M; (i = 1-6), N; (i = 1-6) are given in Appendix C.
Finally the functions J; and J, are defined as follows.

1 1 VitVk—1
kTI - 2(k71)3/2\/1; lOg ‘ \/Eim When k > 1

1 1 t2
Jl(k):/o mdt: —ﬁ+mtan‘1,/% when 0 < k£ < 1 (50)

2 when k=1
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— )M + N(1 — )]
g2(1 —2) +h(l - )

1
A

N-M 1 R, (1+p’+08
Tg+h (l—g+m)’[2 " (1=p)+¢
S S 1+p ll—p>
—— | tan= ——+4tan= —— 51
c( ¢ z G
where
—2h 4h — g2 2
U A Vo Lt S </ N -y}
2(1—g+h) 20l—g+h) 1—g+h (52)
u v 0 0
cos) =———, sinll=——, = \/rcos—, = /rsin—,
W Ve PTVreesy L=vising
and
T=Mh-1)M-(g—2)N, U=hM—-(g—1)N,
1 U 1 U 53
reglre] s—g -2 (53)
ol Al et

By using the results of Eqs. (43), (47) and (48) into Eq. (42), we obtain the piezoelectric Eshelby tensors for
the spheroidal inclusion along the xs-axis. It should be emphasized that these are exact closed form ex-
pressions for the piezoelectric Eshelby tensors.

6. Conclusion

In this paper, by systematically treating the integrals involved in the piezoelectric inclusion problem, we
have obtained explicit results for the piezoelectric Eshelby tensors for a spheroidal inclusion aligned along
the axis of the anisotropy in a transversely isotropic piezoelectric material. The method employed is a direct
extension of a fairly unified approach, which has been recently developed by Mikata (2000), where Deeg’s
results (1980) on a piezoelectric inclusion problem were used. The key step of this paper is an analytical
evaluation of several integrals, which was made possible after a careful treatment of a certain bi-cubic
equation, whose details are given in Appendix B.
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Appendix A. ¢;—q4 and ry;
g1 = Cii(Cakcry + efs)

¢ = —Chyici1 + Cri(Cyskiy + Casiezs + 2ersess) — 2C13(Casterr + €75) — e31(2C13e1s — Caseny)
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q3 = C33Cukyy — (Cly — C11Ca3 + 2C13Cu) K33 + Ca3(ers + 831)2 —e33(2C13e15 — Chye33)
—2(Ci3 + Cu)esiess

qs = Caa(Cs3is3 + €§3)

C'11 - C12

i = -
Cu

q1

ri = —2(]1
ris = —(Ci1 — Ci2)(Csskyy + Caaicss + 2eys5e33) — 2Cas(Caakery + €f5)

ris = —2q>

ris = —(Ch — Cr2)(Cszkas + €§3) — 2Cu(Cs3k1y + Cagicsz + 2erse33)

rie = —2q3

i = —26]4
Ciu+Chn

7121 :Tlh

riza = (Cy + Ci2)(Cssicyy + Caskiss + 2egsess) — 2k (Cis + C44)2 —2(e1s + e31)[2C13e15
+ Culers — esr)]

ri23 = (Ci1 + C12)(Casiez3 + €§3) — 2K33(Ci3 + C44)2 +2Css(ers + 631)2 —4e33(Ci3 + Cu)(ers + e31)
rist = (Ci3 + Cag)knn + ersers + e3n)

riz2 = (Ci3 + Cag)kzz + exz(ers +ean)

riar = Cizers — Cyes

riun = —Css(ers +e31) + e33(Ci3 + Cag)

o1 = —2q1 =12

2 = _MQI =T
Cn

r3 = —2qy = 1114

224 = 1113

rns = —2q3 = 1116

06 = T'115
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ry7 = —2q4 = 1117

231 = 131

32 = 1132

241 = V41

4y = T4

ry = —Cpik

rim = —Cagkiiy — Crixs — (ers + e31)’
1333 = —CyyK33

ry = —Cries

r = Ci3(es +e31) + Cuesr — Cryess
733 = —Cyess
raa1 = C11Cyy

raar = C11C33 — C123 —2C13Cyy

Taa3 = C33C4

Appendix B. Roots of the bi-cubic equation

The key to the evaluation of the integrals /;—/ is the following bi-cubic equation.

az’ +bz* +¢cz2+d =0, or
d
=0

b
26+—Z4+£ZZ+——
a a a

Let us set
_c 1(bY
pP= a 3\a
_2(b\ e d
1=37\4 3a®  a
Then the roots of (B.1) are given as follows.
(a) when ¢* +5:p* <0

21,2y = =i, 23,24 = i, 75,26 = LI,

where
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NN
o= 5—2\/;cos§

(B.4)

_J.r 9 o=t (st
r= cosf = 2 sm072r (q +27p

(b) when ¢* + 5 p >0
21,22 = ial; 23,24 = é:l: ’117 25,26 = _(é + 771) (BS)

=\ V5 Vi 9

0 .
&= \/Fcosi, n= \/Fs1n§

_1 _’_‘)2_'_43

where

%(_q_ q2_|_%p3 (B.6)
P VR VR L a2
b
cos@———{ (Vs + V1) +3—

sin0 =L (%5 - )

When the coefficients a, b, ¢ and d satisfy the conditions discussed in Section 5 (see Mikata, 2000), «, f, 7,
and ¢ are all real and positive. ¢ and y are always real and positive.

Appendix C. Expansion coefficients E; (i =1-3), F; (i =1-6), G; (i =1-6), H; (i = 1-6), K; (i =1-3),
Li (i=16), M; (i=16), N; (i = 1-6)

—Ae® + Be* — Ce2+ D

E =
(a2 —&)(B* — &) (> — &)

—Ao® + Bo* — Coa> + D
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—AB*+ BB —C+D
(& = )2 = B2 = B)

G, =

—Ay® + By* — Cy* +D
(&2 =) (2 =) = )
—Aeb +Be* — C2 + D
&) —g? +h)

H, =

1=

—A* + B —C* +D
(82— 8°)(0" —g&” +h)

1=

1
M, = 7 [A{1? + (&> — h)5*e® — gh(5* + &%)} + B{—g0*e> + h(5* + &%)} — hC + D(g — 6* — & + §°&?)]

[A{ghd*e® — B*(5* + &)} + B(h* — hd°e?) + C{h(6* + &%) — gh} + D{5°¢> — g(6* + &)
+g* — h}]

1
N =—
Y

&?(4¢® — Be* + Ce? — D)

E2 =
(o2 =)~ )"~ )

o?(AoS — Ba* + Co? — D)
(2 = o2)(f* = o2)(3* — &?)

B =

B (AB° — BF* + CP* — D)
(& — B) (2 — B2 — )

2 =
u 7*(4y® — By* + Cy* — D)

2 pu—
(& =) (02 =) (B —9?)

X  &*(Ae® — Be* + Ce? — D)
2T ) (et — g2+ h)

 0°(48° — Bs* + €5 — D)
(@) g+ h)

2

1

MQZ?

[4{(2gh — g°)8°¢* + (g%h — h*)(8* + &%) — gh*} + B{(g* — h)5°&* — gh(” + &%) + W’}
+ C{h(5* + &) — g0%¢*)} + D(6%6* — h)]

N, = %[A{(hz — 2h)0%E + gh*(0* + &%) — I*} + B{ghd*e* — h*(6* + &%)} + C(h* — ho*&?)
+ D{h(8* + &%) — gh}]
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£ Ae* — B2+ C
T @A) - )
Ao* — Ba? +C
B= e i
(e — o) (B — o) (y? — &)
G, — A —Bf*+C
(& — B2 = B2 = B)
4 —BP+C
= 7
(82 = 92)(a =) (B —7?)
K Ae* — B2+ C
T ) — g+ h)
. A* — B>+ C
3:

(2 — 6%)(8" — gd* + h)

My = % [A{h(6* + &%) — g0%e’} + B(6°6* — h) + C{g — (5" + &))}]

1
N =5 [A(K? — hd*e?) + B{h(6* + &) — gh} + C{5*e* — g(6* + &*) + &> — h}]
A Ao* — Bo* +C
4 =
(B =) (7 - ?)
G ABt — BB+ C
4 =
(2 = B)(* = B)
Ay =By +C
=
(2 =)(B* =)
A8* —B&* +C
Li=——5
0" —gd" +h
A(h—g8*) + B — C
M, = 7 2
0 —go +h
N —h&*A+ hB + C(5* — g)
¢ ot — gt h
I o?(Ao* — Boa? + C)
L=

(8" = )7 = )
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BB —BF +C)

Gs = —
(2= B> = B)
P (Ay* — By* + C)
Hs = — 2 V(R 2
(02 =) (B~ —7%)
. _ 5(46* =BS5S +C)
YT g th
. — A& = n)d” — gh} + B(h — g0”) + 0°C
> ot — g+ h
N  A(ghd* — h*) — hé°B + hC
> 5t — g8 +h
Ao* — Bo?
Fs = 2 2 (2 2
(B —o?)(y* — o?)
Ap* — BS?
Go = 2 2\ (2 2
(2 = B> = B)
- A”/4—B'))2
(a2 =) —7?)
A6* — BS?
Le=G——5—
o' —go +h
A(h — g6%) + B&*
M, — (4 g 2
0" —go +h
h(—A40* + B
0 —go +h
where

Y = (8" — g8 + h)(e* — g+ h)
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